Rapid numerical solutions for the Mukhanov-Sasaki equation
نویسندگان
چکیده
We develop a novel technique for numerically computing the primordial power spectra of comoving curvature perturbations. By finding suitable analytic approximations different regions mode equations and stitching them together, we reduce solution differential equation to repeated matrix multiplication. This results in wave-number-dependent increase speed which is orders magnitude faster than traditional approaches at intermediate large wave numbers. demonstrate method's efficacy on challenging case stepped quadratic potential with kinetic dominance. further generalize class frozen initial conditions prove capable emulating quantized spectrum.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملNumerical Solutions of the Schrödinger Equation
for the energy eigenvalues En and the associated energy eigenfunctions (stationary states) Ψn. There are a number of important cases for which the stationary Schrödinger equation can be solved analytically, e.g., the harmonic oscillator (in any number of dimensions) and the hydrogen atom. However, in most cases of practical interest (in, e.g., atomic, molecular, and solid-state physics) exact o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevd.103.123513