Rapid numerical solutions for the Mukhanov-Sasaki equation

نویسندگان

چکیده

We develop a novel technique for numerically computing the primordial power spectra of comoving curvature perturbations. By finding suitable analytic approximations different regions mode equations and stitching them together, we reduce solution differential equation to repeated matrix multiplication. This results in wave-number-dependent increase speed which is orders magnitude faster than traditional approaches at intermediate large wave numbers. demonstrate method's efficacy on challenging case stepped quadratic potential with kinetic dominance. further generalize class frozen initial conditions prove capable emulating quantized spectrum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Numerical Solutions for Fractional Black-Scholes Option Pricing Equation

In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.

متن کامل

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

متن کامل

Numerical Solutions of the Schrödinger Equation

for the energy eigenvalues En and the associated energy eigenfunctions (stationary states) Ψn. There are a number of important cases for which the stationary Schrödinger equation can be solved analytically, e.g., the harmonic oscillator (in any number of dimensions) and the hydrogen atom. However, in most cases of practical interest (in, e.g., atomic, molecular, and solid-state physics) exact o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.103.123513